77 research outputs found

    Coding Opportunity Densification Strategies for Instantly Decodable Network Coding

    Full text link
    In this paper, we aim to identify the strategies that can maximize and monotonically increase the density of the coding opportunities in instantly decodable network coding (IDNC).Using the well-known graph representation of IDNC, first derive an expression for the exact evolution of the edge set size after the transmission of any arbitrary coded packet. From the derived expressions, we show that sending commonly wanted packets for all the receivers can maximize the number of coding opportunities. Since guaranteeing such property in IDNC is usually impossible, this strategy does not guarantee the achievement of our target. Consequently, we further investigate the problem by deriving the expectation of the edge set size evolution after ignoring the identities of the packets requested by the different receivers and considering only their numbers. We then employ this expected expression to show that serving the maximum number of receivers having the largest numbers of missing packets and erasure probabilities tends to both maximize and monotonically increase the expected density of coding opportunities. Simulation results justify our theoretical findings. Finally, we validate the importance of our work through two case studies showing that our identified strategy outperforms the step-by-step service maximization solution in optimizing both the IDNC completion delay and receiver goodput

    Generalized Instantly Decodable Network Coding for Relay-Assisted Networks

    Full text link
    In this paper, we investigate the problem of minimizing the frame completion delay for Instantly Decodable Network Coding (IDNC) in relay-assisted wireless multicast networks. We first propose a packet recovery algorithm in the single relay topology which employs generalized IDNC instead of strict IDNC previously proposed in the literature for the same relay-assisted topology. This use of generalized IDNC is supported by showing that it is a super-set of the strict IDNC scheme, and thus can generate coding combinations that are at least as efficient as strict IDNC in reducing the average completion delay. We then extend our study to the multiple relay topology and propose a joint generalized IDNC and relay selection algorithm. This proposed algorithm benefits from the reception diversity of the multiple relays to further reduce the average completion delay in the network. Simulation results show that our proposed solutions achieve much better performance compared to previous solutions in the literature.Comment: 5 pages, IEEE PIMRC 201

    Instantly Decodable Network Coding for Real-Time Scalable Video Broadcast over Wireless Networks

    Full text link
    In this paper, we study a real-time scalable video broadcast over wireless networks in instantly decodable network coded (IDNC) systems. Such real-time scalable video has a hard deadline and imposes a decoding order on the video layers.We first derive the upper bound on the probability that the individual completion times of all receivers meet the deadline. Using this probability, we design two prioritized IDNC algorithms, namely the expanding window IDNC (EW-IDNC) algorithm and the non-overlapping window IDNC (NOW-IDNC) algorithm. These algorithms provide a high level of protection to the most important video layer before considering additional video layers in coding decisions. Moreover, in these algorithms, we select an appropriate packet combination over a given number of video layers so that these video layers are decoded by the maximum number of receivers before the deadline. We formulate this packet selection problem as a two-stage maximal clique selection problem over an IDNC graph. Simulation results over a real scalable video stream show that our proposed EW-IDNC and NOW-IDNC algorithms improve the received video quality compared to the existing IDNC algorithms

    Delivery Time Reduction for Order-Constrained Applications using Binary Network Codes

    Full text link
    Consider a radio access network wherein a base-station is required to deliver a set of order-constrained messages to a set of users over independent erasure channels. This paper studies the delivery time reduction problem using instantly decodable network coding (IDNC). Motivated by time-critical and order-constrained applications, the delivery time is defined, at each transmission, as the number of undelivered messages. The delivery time minimization problem being computationally intractable, most of the existing literature on IDNC propose sub-optimal online solutions. This paper suggests a novel method for solving the problem by introducing the delivery delay as a measure of distance to optimality. An expression characterizing the delivery time using the delivery delay is derived, allowing the approximation of the delivery time minimization problem by an optimization problem involving the delivery delay. The problem is, then, formulated as a maximum weight clique selection problem over the IDNC graph wherein the weight of each vertex reflects its corresponding user and message's delay. Simulation results suggest that the proposed solution achieves lower delivery and completion times as compared to the best-known heuristics for delivery time reduction
    • …
    corecore